Elettrochimica per le energie rinnovabili: nuova scoperta a Trieste

L'Istituto Officina dei materiali del Cnr inserito in un network di ricerca che ha individuato uno dei tasselli decisivi nella transizione a una economia green: la reazione di evoluzione di ossigeno

TRIESTE. Il passaggio a un'economia basata su fonti di energia rinnovabile richiede l'utilizzo di metodi elettrochimici per convertire l'energia elettrica in energia chimica e in materie prime. Un gruppo di ricercatori del Politecnico di Berlino, del Politecnico di Zurigo, dell'Istituto officina dei materiali del Consiglio nazionale delle ricerche di Trieste e guidato dall'Istituto Fritz Haber di Berlino ha scoperto il meccanismo di reazione di uno dei colli di bottiglia di questi processi, la reazione di evoluzione di ossigeno.

Lo studio, pubblicato su Nature, spiega come uno dei tasselli fondamentali nella transizione a un'economia basata su fonti energetiche rinnovabili è lo sviluppo di nuovi materiali per l'evoluzione elettrocatalitica dell'ossigeno, momento cruciale nell'elettrolisi dell'acqua.

L'elettrolisi è un processo che utilizza energia elettrica per scindere l'acqua nei sui elementi costitutivi, ossigeno e idrogeno, tramite reazioni chimiche. Queste reazioni avvengono sulla superficie dei catalizzatori, elementi che si usano per accelerare o favorire una reazione chimica.

La ricerca spiega il funzionamento di una delle migliori classi di catalizzatori per la reazione di evoluzione dell'ossigeno: gli ossidi di iridio.

«L'importanza dell'elettrocatalisi dell'ossigeno si spiega in riferimento al problema dell'immagazzinamento delle rinnovabili. Infatti, soprattutto per le energie non programmabili, come il solare e l'eolico, il problema dello stoccaggio diventa determinante, per assorbire le fluttuazioni di potenza e per garantire un approvvigionamento energetico affidabile. La strategia è dunque quella di convertire l'energia elettrica in combustibili chimici tramite l'utilizzo di protoni ed elettroni prodotti con l'elettrolisi dell'acqua», spiega Simone Piccinin del Cnr-Iom. Questo metodo è uno dei più promettenti per lo stoccaggio delle rinnovabili non programmabili, perché risulta molto flessibile, dal momento che i combustibili possono essere utilizzati quando e dove servono.

«Il nostro gruppo - spiega il ricercatore - ha scoperto che la reazione di evoluzione dell'ossigeno è in realtà più simile alla tradizionale catalisi termica di quanto si ritenesse. Questo consente, per la prima volta, di applicare strumenti e concetti sviluppati per descrivere la catalisi termica tradizionale anche alla catalisi elettrochimica»

«Dal nostro lavoro - spiega Detre Teschner dell'Istituto Fritz Haber - emerge che il ruolo del potenziale è quello di ossidare la superficie e che l'accumulo della carica indotto da questa ossidazione controlla la velocità di reazione, in modo analogo alla catalisi termica».

«Questi studi ci hanno fatto capire che la reazione è controllata dalla chimica di superficie, a dispetto di quanto si credesse. Sviluppando un metodo di laboratorio in grado di quantificare l'accumulo di carica e usando simulazioni teoriche con tecniche di meccanica quantistica, il nostro gruppo è riuscito a studiare diversi materiali e ha trovato che tutti mostravano lo stesso comportamento», conclude Piccinin. (ANSA).